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ABSTRACT

A uranium alloy 1s described, giving data on mechanical behavior and
how it is affected by certain variations in alloy content and thermal
history. The range in property values thus presented was considerable.
The work described is associated with possible applications of depleted
uranium for structural purposes.
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INTRODUCTION

Uranium, being one of the most dense metals in reasonable abundance,
and showing considerable versatility in its alloying and processing charac-
teristics, is potentially useful as a high density structural material.

This usefulness, as set apart from the more familiar area of nuclear fuels,
applies to depleted uranium, and may extend to many diverse applications.!
For example, the work reported here is associated with structural components
for some Army weapons systems, and pertains to the development of mechanical
or structural properties for a uranium alloy.

Uranjum combines readily with many metals and also exhibits phase
transformation phenomena from which a wide variety of microstructures and
properties may be derived, Familiar treatments such as solutionizing,
quenching, aging, continuous cooling, isothermal transformation, etc., are
applicable to the metallurgical engineering of many uranium base allozs.

Of a number of uranium alloys tabulated in the existing literature,?"

one having composition U-2%Mo-2%Cb-2%Zr-1/2%Ti has exhibited some promising
mechanical properties. The present work reports further investigation of
this alloy with respect to composition, thermal history, and some aspects
of the ensuing mechanical behavior. The extent of composition variation is
detailed in Table I, and thermal history variations are described in the
following text and summarized in Tables Il and III. Given in this respect

Table I. VARIATIONS EXERCISED IN ALLOY COMPOSITION FOR
ALLOY U-(K)% Mo-(K)% Cb-(K)% Zr-%% Ti

Typical (K)% by
Chemical Analysis
(K) = Nominal Mo Cb Zr Ti
1 1.07 0.96 0.89 0.53
1% 1.20 1.23 1.03 0.46
14 1.54 1.48 1.38 0.48
2 2.04 1.96 1.74 0.49

(K)% having nouwinal values of 1. 1}, 1';, and
2 applied singly to an individual alloy

are some tensile properties, impact resistance, hardness, and density, the
extent of which 1s summarized in Figures 1 and 2. The range in property
valves thus presented is seen to be considerable, and the given data may
provide a basis for "tailoring"” property-density combinations as may be
desired within this range,.

PROCEDURES

General procedures consisted of composing alloy ingots by vacuum induc-
tion melting, extruding to rod, machining test samples, heat treating, and
testing., The uranium melting stock employed was high purityv AEC "dingot"
or "derby" material, that i1s, extracted by direct reduction of uranium tet-
rafluoride. Purity of this uranium reportedly was of the order of 99.9%.
The alloy materials employed were molvhdenum pellet 99,95% pure, columbium



bar clippings 99.5% pure, zirconium sponge 99.5% pure, and titanium sponge
99% pure. Melting was accomplished in a zirconia-lined graphite crucible

in a vacuum furnace, and lip-poured within the furnace in molds of the same
material as the melting crucible. Ingots were scalped to 60-pound size,
canned in copper, and extruded to %-inch-diameter rod, the extrusion temper-
ature being 1650 F (900 C), and the extrusion reduction ratio about 16 to 1

Tensile and Charpy blanks were rough machined from extruded stock,
heat treated, and then finish machined. Experimental thermal treatment was
carried out on material in the as-extruded condition, and consisted of solu-
tionizing followed by aging. Both were done in vacuum of about 10-5 mm of
mercury. Solutionizing was accomplished by heating well into the gamma
region to temperatures of the order of 1750 F (954 C), holding for 4 to 8
hours, and then quenching in water. Aging consisted of heating to tempera-
tures from 400 F to 600 F (205 C to 316 C) holding for 4 to 8 hours, and
furnace cooling. Tensile testing was done on a 120,000-pound hydraulic
machine, equipped with =xtensometer attachments, and autographical load-
strain recording device., Impact resistance was determined by a self-
recording, swinging pendulum-type impact machine, with the sample at -40 F,
this convention being maintained for comparative purposes with past data.

RESULTS

In accordance with the most significant aspects of the test data,
results are arranged to show the influence of each of the principal inde-
pendent variables, alloy content and thermal history. Insofar as alloy
content was pursued, its effects are shown 1n Figure 1 and Table II, which

Table II. DATA FOR URANIUM ALLOY GROUP
U-(K)% Mo-(K)% Cb-(K)% Zr-%% T1 IN
AS-EXTRUDED CONDITION

Alloy Identification®

Property (K) = 1 K) = 1% (K) = 1% (K) = 2

Modulus of Elalticlty (millions of psi) 19.¢ 20.3 20.7 14.8
Yield Strength, 0.01% Strain Offset (ksi) 99.0 121,0 134.0 128.0
__Yield Strength, 0.02% Strain Offset (ksi) 108.0 134.0 160.0 140.0
Yield Strength, 0.1% Strain Otfset (ksi) 149.0 186.0 227.0 188.0
Yield Strength, 0.2% Strain Offset (ksi) 174.0 213.0 254.0 216.0
Ultimate Tensile Strength (ksi) 247.0 263.0 308.0 239.0
Fracture Strength (ksi) 318.0 328.0 332.0 260.0
Elongation in 1l -inch (Percent) 8.2 6.5 3.0 3.9
Reduction of Area (Percent) 22.0 16.5 8.9 9.2
Ispact Resistance, Charpy, -40 F (Ft-Lb) 4.0 3.9 3.9 3.3
Hardness, Rockwell C 49.1 51.0 $5.6 49.0
Density (g/ca’d) 17.9 17.8 17.68 17.4

*(K) denotes weight percent of each of the principal alloy elements Mo. Cb, and Zr

Each value given is an average of 4 or more tests
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represent only material in the as-extruded condition. Thermal history was
practically the same for all samples and therefore alloy content 1s regarded
as the factor which i1nfluences the indicated properties.

As explained in Table I the variability in alloy content 1s ven by
the change in content of the principal alloy elements Mo, Cb, a r, where
for any particular case the nominal weight content of each of ti elements

was the same. More conveniently, 1f the alloy 1s expressed as U-(. o Mo-(K)%
Cb-(K)% Zr-%% Ti the parameter for variability in alloy content is given

by (K). Plotted against (K) in Figure 1 are test values (see Table II) of
the following properties when (K) had values from 1 to 2: modulus of elas-
ticity in tension; yield strength for 0.1% offset strain; tensile strength
(ultimate load on initial cross-sectional area); fracture load (fracture
Joad on final cross-sectional area); elongation; reduction of area; 1mpact
resistance; hardness; and density.

An outstanding trend, shown by Figure 1 and Table Il, 1s the optimum
strength and hardness which occurred for a (K) value of 1%. However, opti-
mum ductility, as given by percent reduction of area and percent elongation,
occurred for a (K) value of 1. Consequently, fracture strength, calculated
on the basis of cross-sectional area at fracture, was nearly the same for
(K) values of 1 to 1%. Those strengths which exc.ed 300,000 ps1 are believed
to be the highest now known among uranium base alloys. Impact resistance was
greates£ for (K) values of 1 to 1%, being significantly lower for a (K)
value of 2. It i1s seen therefore that the best combinations of yield
strength and i1mpact resistance for extruded material occurred when (K) was
in the range of 1 to 1%, but particularly when (K) was 1%. Density, rang-
ing from 17.9 to 17.4 grams per cubic centimeter, decreased almost linearly
with increasing (K), as expected. Modulus of elasticity was nearly un-
changed for (K) of 1 to 1%, having about the same value as that listed for
unalloyed alpha uranium. The modulus of elasticity was considerably lower
when (K) was 2, thus implying the retention of some of the gamma (body-
centered cubic) uranium phase, which is known to have a lower modulus.
However, such retention i1s not yet confirmed by X-ray analyses.

The effects of heat treatment, with respect to solution treating and
aging temperature are given in Figure 2 and Table [Il, where (K) parameters
are separated when significant. The outstanding general trend is the exten-
sive softening produced by solutionizing, and the effective hardening pro-

duced bv aging. Also, when the material was in the soft condition, 1impact
resistance was highest and yield strength lowest, but opposite trends became
established as age hardening took place. Thus, the combination of high im-

pact resistance together with high yield strength, which is important to
many structurel applications, appeared in principle to be unobtainable.
However, with respect to each of these two properties, alloys with (k)
values of 1 to 1% were generally superior to those with a (K) value of 2.
The trend for this combination is more clearly indicated by means of their

product, arbitrarily called a "dynamic structural factor®", 1n Figure 2.
his parameter is used only as a means of differentiation among the subject
allovs. It is not to be regarded as a general design parameter. When the
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Table IT1. DATA FOR URANIUM ALLOY GROUP HEAT-TREATED AS SHOWN
U-(K)% Mo-(K)% Cb-(K)% Zr-%% T1*

AGING TEMPERATURE

As-Solutionized 400 V 500 F 600 F
lto|l to l to] 1to 1 to]l to 1 to {1lto
(K) 2 1, 2 2 1'; 2 2 1% 2 2 1, 2
Modulus of Flasticity
{(millions of psi) 10.6 { 11.3 3.5 116.2 16.8] 14.5]18.5]19.5 17.6] 20.31 21.6 ]19.1
Yield Strength,
0.1% Offset (ks1) 43 49 |25.6 |15.11 155.3 1401 190 ] 207 174 210( 215.3 194
Ultimate Tensile
Strength (ksi) 164 173 138 | 192 197 175 202 | 234 189 246 251 232
Fracture Strength
(ks1) 189 193 178 | 214 212 | 218 235 261 210 251 258 | 228

Impact Resistance,

Charpy, -40 V' (ft-1b) |10.6 ] 9.3 |14.4 | 6.2 6.5] 5.3] 3.8 4.7 3.0} 3.9 4.2 | 2.9

Hardness,

Rockwell C 20 31 10 43 44 39 48 50 43 49 51 46
Flongation (percent) 14111.9 181 §5.1 4.8 61 3.7] 3.5 4 2 1.3 3
Reduction 1in

Area (percent) 16.5]14.6 122.4 | 9.8 7.3]117.6}110.0 8.9 11.2 4.2 3.5 8

Dynamic Structural
Factor (Yield Strength
x Impact Resistance) 441 | 368 1007 | 742 373 522 903 562

*(K) denotes weight percent of each of the principal alloy elements Mo, Ck, and Zr
Each value given is an average of 4 or more tests

material was in the soft condition, ductility was highest, modulus of elas-
ticity Jowest, and ultimate strength lowest, When the material became
hardened, strength increased, and modulus of elasticity increased, but
ductility decreased.

Analyses for crystallographic
phase i1dentification have thus
far shown only the existence of
alpha, regardless of those thermal
histories given 1n the present
work. Itis known however, that
additional phases can be produced
by other thermal treatment,6
Structure of the alpha as deduced
from X-ray diffraction traces was
identified as distorted orthorhom-
hic. No other crystallographic
phase was detected. Metallo-
graphic observation, such as the

‘ww typical example shown i1n Figure
3, also indicates primarily
single-phase structure.

Figure 3. MICROSTRUCTURE FOR URANIUM ALLOY, U-
(K) %Mo- (K) %Cb- (K) $Zr-3%Ti, (K) - 2, THERMAL HIS-
TORY EXTRUDED AND SOLUTIONIZED. MICROSTRUCTURE
IS GENERALLY REPRESENTATIVE OF ALLOYS STUDIED.




CONCLUSIONS AND REMARKS

The range 1n property values exhibited in Tables Il and I1II is of con-
siderable breadth. This can be viewed more simply by examining only three
representative cases of mechanical behavior, given roughly in Table IV as
soft, intermediate, und hard. The upper limit of fracture strength,

332,000 psi, 1s noted particularly, since this is certainly among the highest
known for uranium alloys. Table IV is of convenience also when associating
the materials with further processing operations, or with specific applica-
tions requirements. Examples are as follows: the soft condition for cold
work processing; the soft condition for low yield point and/or high impact
resistance requirements; the intermediate condition for optimum combinations
of high yield point with good impact resistance; the hard condition for re-
quirements of high modulus, very high yield point, and/or very high hardness.

Table IV. DATA FOR URANIUM ALLOY GROUP
U-(K)% Mo-(K)% Cb-(K)% Zr-%% T1*

Summary With Respect to Three Conditions of Mecharical Behavior

Condition
Soft Mediunm Hard
(K) Value 2 1 1%
Solutionized
Thermal and Aged,
Property History Solutionized 400 F As-Fxtruded
Density, grams per cmd 17.4 17.9 17.6
Nodulus of Elasticity
(millions of psi) 9.0 17.0 21
Yield Strength, 0.1% Strain (ksi) 23.0 172 224
Ultimate Tensile Strength (ksi) 13§ 206 308
Fracture Strength (ksi) 180 238 332
Elongation (percent) 24 6.0 2
Reduction of Area (percent) 27 13 11
Hardness, Rockwell C 10 47 57
Impact Resistance,
Charpy., -40 F (Ft-Lb) 14.6 6.1 4.0
Dynamic Structural Factor (Yield
Strength x Impact Resistance) 336 1080 896

*(K) denotes weight percent of each of the principal alloy elements Mo, Cb and Zr

The subject alloys thus far defined are able to contribute to areas
requiring high density together with specific structural properties. The
state of knowledge of the particular alloys, with respect to their phys-
1ical metallurgy, at present is relatively inextensive. Thus further pos-
sible developmental potential 1s indicated for them as well as other
related uranium alloys.
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